Compare commits

..

No commits in common. "7ca41449131af6dbc9ea79d802a25a07ce6be3ba" and "b8067e28a13ef843a2917ddfa906df822ea628be" have entirely different histories.

3 changed files with 72 additions and 124 deletions

View File

@ -2,6 +2,4 @@ OLLAMA_URL=http://your-ollama-server:11434
WAKE_URL=http://your-wake-server:9090/wol?mac=XX:XX:XX:XX:XX:XX
TIMEOUT_SECONDS=1
PORT=11434
MODEL_TIMEOUT_SECONDS=30 # 模型推理请求的超时时间(秒)
WAKE_INTERVAL=10 # 唤醒间隔时间(分钟)
CACHE_DURATION=1440 # 模型列表缓存有效期分钟默认1天
MODEL_TIMEOUT_SECONDS=30 # 模型推理请求的超时时间(秒)

View File

@ -43,11 +43,11 @@ Ollama Proxy 是一个为 Ollama 服务设计的智能代理服务器,它提
### 3. 模型列表缓存
- 缓存 `/api/tags` 接口返回的模型列表
- 可配置缓存有效期默认为1440分钟1天
- 当主服务不可用时返回缓存数据,确保客户端始终可以获取模型列表
- 缓存有效期为30分钟
- 当主服务不可用时返回缓存数据
### 4. 健康检查
- 提供 ` ` 端点进行健康状态检查
- 提供 `/health` 端点进行健康状态检查
- Docker 容器集成了健康检查配置
## 配置参数
@ -62,7 +62,6 @@ Ollama Proxy 是一个为 Ollama 服务设计的智能代理服务器,它提
| `--model-timeout` | `MODEL_TIMEOUT_SECONDS` | 模型推理请求超时时间(秒) | 30 |
| `--port` | `PORT` | 代理服务器端口 | 11434 |
| `--wake-interval` | `WAKE_INTERVAL` | 唤醒间隔时间(分钟) | 10 |
| `--cache-duration` | `CACHE_DURATION` | 模型列表缓存有效期(分钟) | 1440 |
## 部署方式
@ -82,9 +81,6 @@ docker run -d \
-e OLLAMA_URL=http://localhost:11434 \
-e WAKE_URL=http://localhost:11434/api/generate \
-e TIMEOUT_SECONDS=10 \
-e MODEL_TIMEOUT_SECONDS=30 \
-e WAKE_INTERVAL=10 \
-e CACHE_DURATION=1440 \
-e PORT=11434 \
yshtcn/ollama-proxy:latest
```
@ -102,9 +98,6 @@ python ollama_proxy.py \
--ollama-url http://localhost:11434 \
--wake-url http://localhost:11434/api/generate \
--timeout 10 \
--model-timeout 30 \
--wake-interval 10 \
--cache-duration 1440 \
--port 11434
```

View File

@ -1,5 +1,5 @@
from fastapi import FastAPI, Request, Response, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.responses import JSONResponse
import httpx
import asyncio
import logging
@ -7,7 +7,6 @@ import os
import argparse
import sys
from datetime import datetime, timedelta
import json
# 配置日志
logging.basicConfig(level=logging.INFO)
@ -21,7 +20,6 @@ parser.add_argument('--timeout', type=int, help='简单请求的超时时间(秒
parser.add_argument('--model-timeout', type=int, help='模型推理请求的超时时间(秒)')
parser.add_argument('--port', type=int, help='代理服务器端口')
parser.add_argument('--wake-interval', type=int, default=10, help='唤醒间隔时间(分钟)')
parser.add_argument('--cache-duration', type=int, help='模型列表缓存有效期(分钟)默认1440分钟(1天)')
args = parser.parse_args()
@ -32,7 +30,6 @@ TIMEOUT_SECONDS = os.getenv('TIMEOUT_SECONDS') or args.timeout
MODEL_TIMEOUT_SECONDS = int(os.getenv('MODEL_TIMEOUT_SECONDS') or args.model_timeout or 30) # 默认30秒
PORT = os.getenv('PORT') or args.port
WAKE_INTERVAL = int(os.getenv('WAKE_INTERVAL') or args.wake_interval)
CACHE_DURATION = int(os.getenv('CACHE_DURATION') or args.cache_duration or 1440) # 默认1天
# 检查必要参数
missing_params = []
@ -64,6 +61,7 @@ last_wake_time = None
# 添加缓存相关的变量
models_cache = None
models_cache_time = None
CACHE_DURATION = timedelta(minutes=30) # 缓存有效期30分钟
async def should_wake():
"""检查是否需要发送唤醒请求"""
@ -88,7 +86,7 @@ async def get_models_from_cache():
global models_cache, models_cache_time
if models_cache is None or models_cache_time is None:
return None
if datetime.now() - models_cache_time > timedelta(minutes=CACHE_DURATION):
if datetime.now() - models_cache_time > CACHE_DURATION:
return None
return models_cache
@ -107,7 +105,6 @@ logger.info(f"TIMEOUT_SECONDS: {TIMEOUT_SECONDS}")
logger.info(f"MODEL_TIMEOUT_SECONDS: {MODEL_TIMEOUT_SECONDS}")
logger.info(f"PORT: {PORT}")
logger.info(f"WAKE_INTERVAL: {WAKE_INTERVAL} minutes")
logger.info(f"CACHE_DURATION: {CACHE_DURATION} minutes")
app = FastAPI()
@ -162,112 +159,72 @@ async def proxy(request: Request, path: str):
logger.info("距离上次唤醒已超过设定时间,发送预防性唤醒请求")
await wake_ollama()
try:
target_url = f"{OLLAMA_URL}/{path}"
headers = dict(request.headers)
headers.pop('host', None)
headers.pop('connection', None)
# 移除可能导致问题的头部
headers.pop('content-length', None)
headers.pop('transfer-encoding', None)
# 根据请求类型选择不同的超时时间
timeout = TIMEOUT_SECONDS if path == "api/tags" else MODEL_TIMEOUT_SECONDS
# 检查是否为生成相关的端点
is_generate_endpoint = path in ["api/generate", "api/chat"]
if is_generate_endpoint and request.method == "POST":
request_body = await request.json()
# 强制设置stream为true以启用流式传输
request_body["stream"] = True
async def generate_stream():
client = httpx.AsyncClient()
try:
async with client.stream(
method=request.method,
url=target_url,
json=request_body,
headers=headers,
timeout=None # 流式传输不设置整体超时
) as response:
async for line in response.aiter_lines():
if line.strip(): # 忽略空行
yield line.encode('utf-8') + b'\n'
except httpx.TimeoutError as e:
logger.error(f"流式传输超时: {str(e)}")
raise
except Exception as e:
logger.error(f"流式传输时发生错误: {str(e)}")
raise
finally:
await client.aclose()
return StreamingResponse(
generate_stream(),
media_type="application/x-ndjson",
headers={'Transfer-Encoding': 'chunked'} # 使用分块传输编码
)
else:
# 非生成请求的处理
async with httpx.AsyncClient() as client:
body = await request.body()
response = await client.request(
method=request.method,
url=target_url,
content=body,
headers=headers,
timeout=timeout,
follow_redirects=True
)
# 如果是标签列表请求且成功,更新缓存
if path == "api/tags" and request.method == "GET" and response.status_code == 200:
await update_models_cache(response.json())
return Response(
content=response.content,
status_code=response.status_code,
headers=dict(response.headers)
)
except httpx.TimeoutException:
logger.warning("Ollama服务器超时发送唤醒请求")
# 如果是标签列表请求,尝试返回缓存
if path == "api/tags" and request.method == "GET":
cached_models = await get_models_from_cache()
if cached_models is not None:
logger.info("返回缓存的标签列表")
return JSONResponse(content=cached_models)
# 直接异步发送唤醒请求,不等待结果
asyncio.create_task(wake_ollama())
return JSONResponse(
status_code=503,
content={"message": "服务器正在唤醒中,请稍后重试"}
)
except httpx.RequestError as e:
logger.error(f"请求错误: {str(e)}")
# 如果是标签列表请求,尝试返回缓存
if path == "api/tags" and request.method == "GET":
cached_models = await get_models_from_cache()
if cached_models is not None:
logger.info("返回缓存的标签列表")
return JSONResponse(content=cached_models)
return JSONResponse(
status_code=502,
content={"message": f"无法连接到Ollama服务器: {str(e)}"}
)
async with httpx.AsyncClient() as client:
try:
target_url = f"{OLLAMA_URL}/{path}"
body = await request.body()
headers = dict(request.headers)
headers.pop('host', None)
headers.pop('connection', None)
except Exception as e:
logger.error(f"代理请求失败: {str(e)}")
return JSONResponse(
status_code=500,
content={"message": f"代理请求失败: {str(e)}"}
)
# 根据请求类型选择不同的超时时间
timeout = TIMEOUT_SECONDS if path == "api/tags" else MODEL_TIMEOUT_SECONDS
response = await client.request(
method=request.method,
url=target_url,
content=body,
headers=headers,
timeout=timeout, # 使用动态超时时间
follow_redirects=True
)
# 如果是标签列表请求且成功,更新缓存
if path == "api/tags" and request.method == "GET" and response.status_code == 200:
await update_models_cache(response.json())
return Response(
content=response.content,
status_code=response.status_code,
headers=dict(response.headers)
)
except httpx.TimeoutException:
logger.warning("Ollama服务器超时发送唤醒请求")
# 如果是标签列表请求,尝试返回缓存
if path == "api/tags" and request.method == "GET":
cached_models = await get_models_from_cache()
if cached_models is not None:
logger.info("返回缓存的标签列表")
return JSONResponse(content=cached_models)
# 直接异步发送唤醒请求,不等待结果
asyncio.create_task(wake_ollama())
return JSONResponse(
status_code=503,
content={"message": "服务器正在唤醒中,请稍后重试"}
)
except httpx.RequestError as e:
logger.error(f"请求错误: {str(e)}")
# 如果是标签列表请求,尝试返回缓存
if path == "api/tags" and request.method == "GET":
cached_models = await get_models_from_cache()
if cached_models is not None:
logger.info("返回缓存的标签列表")
return JSONResponse(content=cached_models)
return JSONResponse(
status_code=502,
content={"message": f"无法连接到Ollama服务器: {str(e)}"}
)
except Exception as e:
logger.error(f"代理请求失败: {str(e)}")
return JSONResponse(
status_code=500,
content={"message": f"代理请求失败: {str(e)}"}
)
if __name__ == "__main__":
import uvicorn