// // Notice Regarding Standards. AMD does not provide a license or sublicense to // any Intellectual Property Rights relating to any standards, including but not // limited to any audio and/or video codec technologies such as MPEG-2, MPEG-4; // AVC/H.264; HEVC/H.265; AAC decode/FFMPEG; AAC encode/FFMPEG; VC-1; and MP3 // (collectively, the "Media Technologies"). For clarity, you will pay any // royalties due for such third party technologies, which may include the Media // Technologies that are owed as a result of AMD providing the Software to you. // // MIT license // // Copyright (c) 2019 Advanced Micro Devices, Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include #include #include #include #include #include #if defined(_WIN32) #include #else #include #endif class InstructionSet { // forward declarations class InstructionSet_Internal; public: // getters static std::string Vendor(void) { return CPU_Rep.vendor_; } static std::string Brand(void) { return CPU_Rep.brand_; } static bool SSE3(void) { return CPU_Rep.f_1_ECX_[0]; } static bool PCLMULQDQ(void) { return CPU_Rep.f_1_ECX_[1]; } static bool MONITOR(void) { return CPU_Rep.f_1_ECX_[3]; } static bool SSSE3(void) { return CPU_Rep.f_1_ECX_[9]; } static bool FMA(void) { return CPU_Rep.f_1_ECX_[12]; } static bool CMPXCHG16B(void) { return CPU_Rep.f_1_ECX_[13]; } static bool SSE41(void) { return CPU_Rep.f_1_ECX_[19]; } static bool SSE42(void) { return CPU_Rep.f_1_ECX_[20]; } static bool MOVBE(void) { return CPU_Rep.f_1_ECX_[22]; } static bool POPCNT(void) { return CPU_Rep.f_1_ECX_[23]; } static bool AES(void) { return CPU_Rep.f_1_ECX_[25]; } static bool XSAVE(void) { return CPU_Rep.f_1_ECX_[26]; } static bool OSXSAVE(void) { return CPU_Rep.f_1_ECX_[27]; } static bool AVX(void) { return CPU_Rep.f_1_ECX_[28]; } static bool F16C(void) { return CPU_Rep.f_1_ECX_[29]; } static bool RDRAND(void) { return CPU_Rep.f_1_ECX_[30]; } static bool MSR(void) { return CPU_Rep.f_1_EDX_[5]; } static bool CX8(void) { return CPU_Rep.f_1_EDX_[8]; } static bool SEP(void) { return CPU_Rep.f_1_EDX_[11]; } static bool CMOV(void) { return CPU_Rep.f_1_EDX_[15]; } static bool CLFSH(void) { return CPU_Rep.f_1_EDX_[19]; } static bool MMX(void) { return CPU_Rep.f_1_EDX_[23]; } static bool FXSR(void) { return CPU_Rep.f_1_EDX_[24]; } static bool SSE(void) { return CPU_Rep.f_1_EDX_[25]; } static bool SSE2(void) { return CPU_Rep.f_1_EDX_[26]; } static bool FSGSBASE(void) { return CPU_Rep.f_7_EBX_[0]; } static bool BMI1(void) { return CPU_Rep.f_7_EBX_[3]; } static bool HLE(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[4]; } static bool AVX2(void) { return CPU_Rep.f_7_EBX_[5]; } static bool BMI2(void) { return CPU_Rep.f_7_EBX_[8]; } static bool ERMS(void) { return CPU_Rep.f_7_EBX_[9]; } static bool INVPCID(void) { return CPU_Rep.f_7_EBX_[10]; } static bool RTM(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[11]; } static bool AVX512F(void) { return CPU_Rep.f_7_EBX_[16]; } static bool RDSEED(void) { return CPU_Rep.f_7_EBX_[18]; } static bool ADX(void) { return CPU_Rep.f_7_EBX_[19]; } static bool AVX512PF(void) { return CPU_Rep.f_7_EBX_[26]; } static bool AVX512ER(void) { return CPU_Rep.f_7_EBX_[27]; } static bool AVX512CD(void) { return CPU_Rep.f_7_EBX_[28]; } static bool SHA(void) { return CPU_Rep.f_7_EBX_[29]; } static bool AVX512BW(void) { return CPU_Rep.f_7_EBX_[30]; } static bool AVX512VL(void) { return CPU_Rep.f_7_EBX_[31]; } static bool PREFETCHWT1(void) { return CPU_Rep.f_7_ECX_[0]; } static bool LAHF(void) { return CPU_Rep.f_81_ECX_[0]; } static bool LZCNT(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_ECX_[5]; } static bool ABM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[5]; } static bool SSE4a(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[6]; } static bool XOP(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[11]; } static bool TBM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[21]; } static bool SYSCALL(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[11]; } static bool MMXEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[22]; } static bool RDTSCP(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[27]; } static bool _3DNOWEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[30]; } static bool _3DNOW(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[31]; } private: static const InstructionSet_Internal CPU_Rep; class InstructionSet_Internal { protected: void GetCpuID ( int32_t registers[4], //out int32_t functionID, int32_t subfunctionID = 0 ) { #ifdef _WIN32 if(!subfunctionID) { __cpuid((int *)registers, (int)functionID); } else { __cpuidex((int *)registers, (int)functionID, subfunctionID); } #else asm volatile ( "cpuid": "=a" (registers[0]), "=b" (registers[1]), "=c" (registers[2]), "=d" (registers[3]): "a" (functionID), "c" (subfunctionID) ); #endif } public: InstructionSet_Internal() : nIds_( 0 ), nExIds_( 0 ), isIntel_( false ), isAMD_( false ), f_1_ECX_( 0 ), f_1_EDX_( 0 ), f_7_EBX_( 0 ), f_7_ECX_( 0 ), f_81_ECX_( 0 ), f_81_EDX_( 0 ) { //int cpuInfo[4] = {-1}; std::array cpui; // Calling __cpuid with 0x0 as the function_id argument // gets the number of the highest valid function ID. //todo: verify //__cpuid(cpui.data(), 0); GetCpuID(cpui.data(), 0); nIds_ = cpui[0]; for (int i = 0; i <= nIds_; ++i) { //todo: verify //__cpuidex(cpui.data(), i, 0); GetCpuID(cpui.data(), i, 0); data_.push_back(cpui); } // Capture vendor string char vendor[0x20]; std::memset(vendor, 0, sizeof(vendor)); *reinterpret_cast(vendor) = data_[0][1]; *reinterpret_cast(vendor + 4) = data_[0][3]; *reinterpret_cast(vendor + 8) = data_[0][2]; vendor_ = vendor; if (vendor_ == "GenuineIntel") { isIntel_ = true; } else if (vendor_ == "AuthenticAMD") { isAMD_ = true; } // load bitset with flags for function 0x00000001 if (nIds_ >= 1) { f_1_ECX_ = data_[1][2]; f_1_EDX_ = data_[1][3]; } // load bitset with flags for function 0x00000007 if (nIds_ >= 7) { f_7_EBX_ = data_[7][1]; f_7_ECX_ = data_[7][2]; } // Calling __cpuid with 0x80000000 as the function_id argument // gets the number of the highest valid extended ID. //todo: verify //__cpuid(cpui.data(), 0x80000000); GetCpuID(cpui.data(), 0x80000000); nExIds_ = cpui[0]; char brand[0x40]; memset(brand, 0, sizeof(brand)); for (int i = 0x80000000; i <= nExIds_; ++i) { //todo: verify //__cpuidex(cpui.data(), i, 0); GetCpuID(cpui.data(), i, 0); extdata_.push_back(cpui); } // load bitset with flags for function 0x80000001 if (nExIds_ >= 0x80000001) { f_81_ECX_ = extdata_[1][2]; f_81_EDX_ = extdata_[1][3]; } // Interpret CPU brand string if reported if (nExIds_ >= 0x80000004) { memcpy(brand, extdata_[2].data(), sizeof(cpui)); memcpy(brand + 16, extdata_[3].data(), sizeof(cpui)); memcpy(brand + 32, extdata_[4].data(), sizeof(cpui)); brand_ = brand; } }; virtual ~InstructionSet_Internal() { int i = 0; ++i; } int nIds_; int nExIds_; std::string vendor_; std::string brand_; bool isIntel_; bool isAMD_; std::bitset<32> f_1_ECX_; std::bitset<32> f_1_EDX_; std::bitset<32> f_7_EBX_; std::bitset<32> f_7_ECX_; std::bitset<32> f_81_ECX_; std::bitset<32> f_81_EDX_; std::vector> data_; std::vector> extdata_; }; };